کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
419636 | 683842 | 2013 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Counting humps and peaks in generalized Motzkin paths
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let us call a lattice path in Z×ZZ×Z from (0,0)(0,0) to (n,0)(n,0) using U=(1,k)U=(1,k), D=(1,−1)D=(1,−1), and H=(a,0)H=(a,0) steps and never going below the xx-axis, a (k,a)(k,a)-path (of order nn). A super (k,a)(k,a)-path is a (k,a)(k,a)-path which is permitted to go below the xx-axis. We relate the total number of humps in all of the (k,a)(k,a)-paths of order nn to the number of super (k,a)(k,a)-paths, where a hump is defined to be a sequence of steps of the form UHiDUHiD, i≥0i≥0. This generalizes recent results concerning the cases when k=1k=1 and a=1a=1 or a=∞a=∞. A similar relation may be given involving peaks (consecutive steps of the form UDUD).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 161, Issues 13–14, September 2013, Pages 2213–2216
Journal: Discrete Applied Mathematics - Volume 161, Issues 13–14, September 2013, Pages 2213–2216
نویسندگان
Toufik Mansour, Mark Shattuck,