کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
419649 683846 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Positive circuits and maximal number of fixed points in discrete dynamical systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Positive circuits and maximal number of fixed points in discrete dynamical systems
چکیده انگلیسی

We consider a product XX of nn finite intervals of integers, a map FF from XX to itself, the asynchronous state transition graph Γ(F)Γ(F) on XX that Thomas proposed as a model for the dynamics of a network of nn genes, and the interaction graph G(F)G(F) that describes the topology of the system in terms of positive and negative interactions between its nn components. Then, we establish an upper bound on the number of fixed points for FF, and more generally on the number of attractors in Γ(F)Γ(F), which only depends on XX and on the topology of the positive circuits of G(F)G(F). This result generalizes the following discrete version of Thomas’ conjecture recently proved by Richard and Comet: If G(F)G(F) has no positive circuit, then Γ(F)Γ(F) has a unique attractor. This result also generalizes a result on the maximal number of fixed points in Boolean networks obtained by Aracena, Demongeot and Goles. The interest of this work in the context of gene network modeling is briefly discussed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 157, Issue 15, 6 August 2009, Pages 3281–3288
نویسندگان
,