کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
419917 683876 2008 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Aspects of discrete mathematics and probability in the theory of machine learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Aspects of discrete mathematics and probability in the theory of machine learning
چکیده انگلیسی

This paper discusses the applications of certain combinatorial and probabilistic techniques to the analysis of machine learning. Probabilistic models of learning initially addressed binary classification (or pattern classification). Subsequently, analysis was extended to regression problems, and to classification problems in which the classification is achieved by using real-valued functions (where the concept of a large margin has proven useful). Another development, important in obtaining more applicable models, has been the derivation of data-dependent bounds. Here, we discuss some of the key probabilistic and combinatorial techniques and results, focusing on those of most relevance to researchers in discrete applied mathematics.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 156, Issue 6, 15 March 2008, Pages 883–902
نویسندگان
,