کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
420324 | 683924 | 2011 | 14 صفحه PDF | دانلود رایگان |

We study representations of polynomials over a field KK from the point of view of their expressive power. Three important examples for the paper are polynomials arising as permanents of bounded tree-width matrices, polynomials given via arithmetic formulas, and families of so called CNF polynomials. The latter arise in a canonical way from families of Boolean formulas in conjunctive normal form. To each such CNF formula there is a canonically attached incidence graph. Of particular interest to us are CNF polynomials arising from formulas with an incidence graph of bounded tree- or clique-width.We show that the class of polynomials arising from families of polynomial size CNF formulas of bounded tree-width is the same as those represented by polynomial size arithmetic formulas, or permanents of bounded tree-width matrices of polynomial size. Then, applying arguments from communication complexity we show that general permanent polynomials cannot be expressed by CNF polynomials of bounded tree-width. We give a similar result in the case where the clique-width of the incidence graph is bounded, but for this we need to rely on the widely believed complexity theoretic assumption #P⊈FP/poly#P⊈FP/poly.
Journal: Discrete Applied Mathematics - Volume 159, Issue 1, 6 January 2011, Pages 1–14