کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
420436 683937 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the kkth smallest and kkth greatest modified Wiener indices of trees
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On the kkth smallest and kkth greatest modified Wiener indices of trees
چکیده انگلیسی

The Wiener index of a tree TT obeys the relation W(T)=∑en1(e)⋅n2(e)W(T)=∑en1(e)⋅n2(e), where n1(e)n1(e) and n2(e)n2(e) are the number of vertices on the two sides of the edge ee, and where the summation goes over all edges of TT. Lately, Nikolić, Trinajstić and Randić put forward a novel modification mWmW of the Wiener index, defined as mW(T)=∑e(n1(e)⋅n2(e))−1mW(T)=∑e(n1(e)⋅n2(e))−1. Very recently, Gutman, Vukičević and Z˘erovnik extended the definitions of W(T)W(T) and mW(T)mW(T) to mWλ(T)=∑e(n1(e)⋅n2(e))λmWλ(T)=∑e(n1(e)⋅n2(e))λ, and they called mW(T)mW(T) the modified Wiener index of TT, and mWλ(T)mWλ(T) the variable Wiener index of TT. Moreover, they obtained the two smallest and two greatest variable Wiener indices mWλ(T)mWλ(T) for all λ(λ≠0)λ(λ≠0) among trees on nn vertices. In this paper, we identify the kkth smallest and kkth greatest modified Wiener indices for all kk up to ⌊n2⌋+1 among the class of trees of order nn.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 158, Issue 6, 28 March 2010, Pages 699–705
نویسندگان
, ,