کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
420516 | 683951 | 2008 | 5 صفحه PDF | دانلود رایگان |

Let DD be a directed graph; the (l,ω)(l,ω)-Independence Number of graph DD, denoted by αl,ω(D)αl,ω(D), is an important performance parameter for interconnection networks. De Bruijn networks and Kautz networks, denoted by B(d,n)B(d,n) and K(d,n)K(d,n) respectively, are versatile and efficient topological structures of interconnection networks. For l=1,2,…,nl=1,2,…,n, this paper shows that αl,d−1(B(d,n))=dn,αl,d−1(K(d,n))=αl,d(K(d,n))=dn+dn−1αl,d−1(B(d,n))=dn,αl,d−1(K(d,n))=αl,d(K(d,n))=dn+dn−1 if d≥3d≥3 and n≤d−2n≤d−2. In particular, the paper shows the exact value of the Independence Number for B(d,1)B(d,1) and B(d,2)B(d,2) for any dd. For the generalized situation, the paper obtains a lower bound αl,d−1(B(d,n))≥d2αl,d−1(B(d,n))≥d2 if n≥3n≥3 and d≥5d≥5.
Journal: Discrete Applied Mathematics - Volume 156, Issue 15, 6 August 2008, Pages 3035–3039