کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
420537 683952 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An approximation algorithm for multidimensional assignment problems minimizing the sum of squared errors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
An approximation algorithm for multidimensional assignment problems minimizing the sum of squared errors
چکیده انگلیسی

Given a complete kk-partite graph G=(V1,V2,…,Vk;E)G=(V1,V2,…,Vk;E) satisfying |V1|=|V2|=⋯=|Vk|=n|V1|=|V2|=⋯=|Vk|=n and weights of all  kk-cliques of GG, the  kk-dimensional assignment problem finds a partition of vertices of GG into a set of (pairwise disjoint) nn kk-cliques that minimizes the sum total of weights of the chosen cliques. In this paper, we consider a case in which the weight of a clique is defined by the sum of given weights of edges induced by the clique. Additionally, we assume that vertices of GG are embedded in the dd-dimensional space QdQd and a weight of an edge is defined by the square of the Euclidean distance between its two endpoints. We describe that these problem instances arise from a multidimensional Gaussian model of a data-association problem.We propose a second-order cone programming relaxation of the problem and a polynomial time randomized rounding procedure. We show that the expected objective value obtained by our algorithm is bounded by (5/2−3/k)(5/2−3/k) times the optimal value. Our result improves the previously known bound (4−6/k)(4−6/k) of the approximation ratio.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 157, Issue 9, 6 May 2009, Pages 2124–2135
نویسندگان
, ,