کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
420645 683966 2008 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An upper bound on the independence number of benzenoid systems
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
An upper bound on the independence number of benzenoid systems
چکیده انگلیسی

Recently, the graph theoretic independence number has been linked to fullerene stability [S. Fajtlowicz, C. Larson, Graph-theoretic independence as a predictor of fullerene stability, Chem. Phys. Lett. 377 (2003) 485–490; S. Fajtlowicz, Fullerene Expanders, A list of Conjectures of Minuteman, Available from S. Fajtlowicz: math0@bayou.uh.edu]. In particular, stable fullerenes seem to minimize their independence numbers. A large piece of evidence for this hypothesis comes from the fact that stable benzenoids—close relatives of fullerenes—do minimize their independence numbers [S. Fajtlowicz, “Pony Express”—Graffiti's conjectures about carcinogenic and stable benzenoids, 〈〈http://www.math.uh.edu/∼siemion/pony.html〉〉]. In this paper, an upper bound on the independence number of benzenoids is introduced and proven—giving a limit on how large the independence ratio for benzenoids can be. In conclusion, this bound on independence is correlated to an upper bound on the number of unpaired sites a benzenoid system has with respect to a maximum matching, which is precisely the number of zero eigenvalues in the spectrum of the adjacency matrix (due to a conjecture of Graffiti and its proof by Sachs [S. Fajtlowicz, “Pony Express”—Graffiti's conjectures about carcinogenic and stable benzenoids, 〈〈http://www.math.uh.edu/∼siemion/pony.html〉〉; H. Sachs, P. John, S. Fajtlowicz, On Maximum Matchings and Eigenvalues of Benzenoid Graphs, preprint—MATCH]). Thus, since zero eigenvalues and unpaired sites are indicative of instability (reactivity), we get a simple but intuitive bound on how reactive a benzenoid molecule can be.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 156, Issue 5, 1 March 2008, Pages 607–619
نویسندگان
,