کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
420794 683982 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bernoulli matrix and its algebraic properties
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Bernoulli matrix and its algebraic properties
چکیده انگلیسی

In this paper, we define the generalized Bernoulli polynomial matrix B(α)(x)B(α)(x) and the Bernoulli matrix BB. Using some properties of Bernoulli polynomials and numbers, a product formula of B(α)(x)B(α)(x) and the inverse of BB were given. It is shown that not only B(x)=P[x]BB(x)=P[x]B, where P[x]P[x] is the generalized Pascal matrix, but also B(x)=FM(x)=N(x)FB(x)=FM(x)=N(x)F, where FF is the Fibonacci matrix, M(x)M(x) and N(x)N(x) are the (n+1)×(n+1)(n+1)×(n+1) lower triangular matrices whose (i,j)(i,j)-entries are ijBi-j(x)-i-1jBi-j-1(x)-i-2jBi-j-2(x) and ijBi-j(x)-ij+1Bi-j-1(x)-ij+2Bi-j-2(x), respectively. From these formulas, several interesting identities involving the Fibonacci numbers and the Bernoulli polynomials and numbers are obtained. The relationships are established about Bernoulli, Fibonacci and Vandermonde matrices.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 154, Issue 11, 1 July 2006, Pages 1622–1632
نویسندگان
, ,