کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
420880 | 683996 | 2006 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Symmetric matrices and codes correcting rank errors beyond the ⌊(d-1)/2⌋⌊(d-1)/2⌋ bound
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Rank codes can be described either as matrix codes over the base field FqFq or as vector codes over the extension field FqnFqn. For any matrix code, there exists a corresponding vector codes, and vice versa. We investigate matrix codes containing a linear subcode of symmetric matrices. The corresponding vector codes contain a linear subspace of so-called symmetric vectors. It is shown that such vector codes are generated by self-orthogonal bases of the field Fqn.Fqn. If code distance is equal to dd, than such codes can correct not only all the errors of rank up to ⌊(d-1)/2⌋⌊(d-1)/2⌋ but also many symmetric errors of rank beyond this bound.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 154, Issue 2, 1 February 2006, Pages 305–312
Journal: Discrete Applied Mathematics - Volume 154, Issue 2, 1 February 2006, Pages 305–312
نویسندگان
Ernst M. Gabidulin, Nina I. Pilipchuk,