کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
420947 684008 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
New classes of facets of the cut polytope and tightness of Imm22Imm22 Bell inequalities
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
New classes of facets of the cut polytope and tightness of Imm22Imm22 Bell inequalities
چکیده انگلیسی

The Grishukhin inequality is a facet of the cut polytope CUT7□ of the complete graph K7K7, for which no natural generalization to a family of inequalities has previously been found. On the other hand, the Imm22Imm22 Bell inequalities of quantum information theory, found by Collins and Gisin, can be seen as valid inequalities of the cut polytope CUT□(∇Km,m)CUT□(∇Km,m) of the complete tripartite graph ∇Km,m=K1,m,m∇Km,m=K1,m,m. They conjectured that they are facet inducing. We prove their conjecture by relating the Imm22Imm22 inequalities to a new class of facets of CUTN□ that are a natural generalization of the Grishukhin inequality. An important component of the proof is the use of a method called triangular elimination, introduced by Avis, Imai, Ito and Sasaki, for producing facets of CUT□(∇Km,m)CUT□(∇Km,m) from facets of CUTN□.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 155, Issue 13, 15 August 2007, Pages 1689–1699
نویسندگان
, ,