کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
421368 | 684206 | 2008 | 15 صفحه PDF | دانلود رایگان |

In 1994 Fredman and Khachiyan established the remarkable result that the duality of a pair of monotone Boolean functions, in disjunctive normal forms, can be tested in quasi-polynomial time, thus putting the problem, most likely, somewhere between polynomiality and coNP-completeness. We strengthen this result by showing that the duality testing problem can in fact be solved in polylogarithmic time using a quasi-polynomial number of processors (in the PRAM model). While our decomposition technique can be thought of as a generalization of that of Fredman and Khachiyan, it yields stronger bounds on the sequential complexity of the problem in the case when the sizes of f and g are significantly different, and also allows for generating all minimal transversals of a given hypergraph using only polynomial space.
Journal: Discrete Applied Mathematics - Volume 156, Issue 11, 6 June 2008, Pages 2109–2123