کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
421415 | 684221 | 2007 | 11 صفحه PDF | دانلود رایگان |

In this paper, we study the existence and uniqueness of solutions to the vertex-weighted Dirichlet problem on locally finite graphs. Let B be a subset of the vertices of a graph G . The Dirichlet problem is to find a function whose discrete Laplacian on G⧹BG⧹B and its values on B are given. Each infinite connected component of G⧹BG⧹B is called an end of G relative to B. If there are no ends, then there is a unique solution to the Dirichlet problem. Such a solution can be obtained as a limit of an averaging process or as a minimizer of a certain functional or as a limit-solution of the heat equation on the graph. On the other hand, we show that if G is a locally finite graph with l ends, then the set of solutions of any Dirichlet problem, if non-empty, is at least l-dimensional.
Journal: Discrete Applied Mathematics - Volume 155, Issue 18, 1 November 2007, Pages 2496–2506