کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
421655 684928 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
How Many Times do We Need an Assumption to Prove a Tautology in Minimal Logic? Examples on the Compression Power of Classical Reasoning
ترجمه فارسی عنوان
چند بار ما چندین بار نیاز به یک فرض برای اثبات توهم در منطق حداقل داریم؟ نمونه هایی از قدرت فشرده سازی استدلال کلاسیک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی

In this article we present a class of formulas ϕn,0≤n, that need at least 2n assumption occurrences of other formula βn in any normal proof in Natural Deduction for purely implicational minimal propositional logic (M→). In classical implicational logic, each ϕn have normal proofs using at most one assumption occurrence. As a consequence, normal proofs of ϕn have exponential lower bound in M→ and linear lower bound in its classical version. In fact, 2n is the lower-bound for cut-free Sequent proofs too. The existence of this class of formulas have strong influence in designing automatic proof-procedures based in such systems. It is discussed proof-theoretically how tautologies in purely implicational classical logic can be proved by polynomially sized derivations when their minimal counterpart is exponentially sized.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Theoretical Computer Science - Volume 315, 9 September 2015, Pages 31-46