کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
421664 684929 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SLAMM – Automating Memory Analysis for Numerical Algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
SLAMM – Automating Memory Analysis for Numerical Algorithms
چکیده انگلیسی

Memory efficiency is overtaking the number of floating-point operations as a performance determinant for numerical algorithms. Integrating memory efficiency into an algorithm from the start is made easier by computational tools that can quantify its memory traffic. The Sparse Linear Algebra Memory Model (SLAMM) is implemented by a source-to-source translator that accepts a MATLAB specification of an algorithm and adds code to predict memory traffic.Our tests on numerous small kernels and complete implementations of algorithms for solving sparse linear systems show that SLAMM accurately predicts the amount of data loaded from the memory hierarchy to the L1 cache to within 20% error on three different compute platforms. SLAMM allows us to evaluate the memory efficiency of particular choices rapidly during the design phase of an iterative algorithm, and it provides an automated mechanism for tuning exisiting implementations. It reduces the time to perform a priori memory analysis from as long as several days to 20 minutes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Theoretical Computer Science - Volume 253, Issue 7, 17 September 2010, Pages 89-104