کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
421919 684985 2009 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Integration of Multiple Classifiers for Chinese Semantic Dependency Analysis
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Integration of Multiple Classifiers for Chinese Semantic Dependency Analysis
چکیده انگلیسی

Semantic Dependency Analysis (SDA) has extensive applications in Natural Language Processing (NLP). In this paper, an integration of multiple classifiers is presented for SDA of Chinese. A Naive Bayesian Classifier, a Decision Tree and a Maximum Entropy classifier are used in a majority wins voting scheme. A portion of the Penn Chinese Treebank was manually annotated with semantic dependency structure. Then each of the three classifiers was trained on the same training data. All three of the classifiers were used to produce candidate relations for test data and the candidate relation that had the majority vote was chosen. The proposed approach achieved an accuracy of 86% in experimentation, which shows that the proposed approach is a promising one for semantic dependency analysis of Chinese.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Theoretical Computer Science - Volume 225, 2 January 2009, Pages 457-468