کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
423001 685160 2013 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Comparison of Multi-label Feature Selection Methods using the Problem Transformation Approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A Comparison of Multi-label Feature Selection Methods using the Problem Transformation Approach
چکیده انگلیسی

Feature selection is an important task in machine learning, which can effectively reduce the dataset dimensionality by removing irrelevant and/or redundant features. Although a large body of research deals with feature selection in single-label data, in which measures have been proposed to filter out irrelevant features, this is not the case for multi-label data. This work proposes multi-label feature selection methods which use the filter approach. To this end, two standard multi-label feature selection approaches, which transform the multi-label data into single-label data, are used. Besides these two problem transformation approaches, we use ReliefF and Information Gain to measure the goodness of features. This gives rise to four multi-label feature selection methods. A thorough experimental evaluation of these methods was carried out on 10 benchmark datasets. Results show that ReliefF is able to select fewer features without diminishing the quality of the classifiers constructed using the features selected.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Theoretical Computer Science - Volume 292, 5 March 2013, Pages 135-151