کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
423598 685262 2008 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Complete Axiomatization for Divergent-Sensitive Bisimulations in Basic Process Algebra with Prefix Iteration 1
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Complete Axiomatization for Divergent-Sensitive Bisimulations in Basic Process Algebra with Prefix Iteration 1
چکیده انگلیسی

We study the divergent-sensitive spectrum of weak bisimulation equivalences in the setting of process algebra. To represent the infinite behavior, we consider the prefix iteration extension of a fragment of Milner's CCS. The prefix iteration operator is a variant on the binary version of the Kleene star operator obtained by restricting the first argument to be an atomic action and allows us to capture the notion of recursion in a pure algebraic way. We investigate four typical divergent-sensitive weak bisimulation equivalences, namely divergent, stable, completed and divergent stable weak bisimulation equivalences from an axiomatic perspective. A lattice of distinguishing axioms is developed and thus pure equational axiomatizations for these congruences are obtained. A large part of the current paper is devoted to a considerable complicated proof for completeness. This work, to some extent, sheds light on distinct semantics of divergence.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Theoretical Computer Science - Volume 212, 30 April 2008, Pages 55-70