کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
424073 685333 2007 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Logic for Reasoning about Generic Judgments
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A Logic for Reasoning about Generic Judgments
چکیده انگلیسی

This paper presents an extension of a proof system for encoding generic judgments, the logic FOλΔ∇ of Miller and Tiu, with an induction principle. The logic FOλΔ∇ is itself an extension of intuitionistic logic with fixed points and a “generic quantifier”, ∇, which is used to reason about the dynamics of bindings in object systems encoded in the logic. A previous attempt to extend FOλΔ∇ with an induction principle has been unsuccessful in modeling some behaviours of bindings in inductive specifications. It turns out that this problem can be solved by relaxing some restrictions on ∇, in particular by adding the axiom B≡∇x.B, where x is not free in B. We show that by adopting the equivariance principle, the presentation of the extended logic can be much simplified. Cut-elimination for the extended logic is stated, and some applications in reasoning about an object logic and a simply typed λ-calculus are illustrated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electronic Notes in Theoretical Computer Science - Volume 174, Issue 5, 2 June 2007, Pages 3-18