کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
424773 685640 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A hybrid collaborative filtering recommendation mechanism for P2P networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A hybrid collaborative filtering recommendation mechanism for P2P networks
چکیده انگلیسی

With the increasing number of commerce facilities using peer-to-peer (P2P) networks, challenges exist in recommending interesting or useful products and services to a particular customer. Collaborative Filtering (CF) is one of the most successful techniques that attempts to recommend items (such as music, movies, web sites) which are likely to be of interest to the people. However, conventional collaborative filtering encounters a number of challenges on its recommendation accuracy. One of the most important challenges may be due to the sparse attributes inherent to the rating data. Another important challenge is that existing CF methods consider mainly user-based or item-based ratings respectively. In this paper a P2P-based hybrid collaborative filtering mechanism for the support of combining user-based and item attribute-based ratings is considered. We take advantage of the inherent item attributes to construct a Boolean matrix to predict the blank elements for a sparse user–item matrix. Furthermore, a Hybrid collaborative filtering (HCF) algorithm is presented to improve the predictive accuracy. Case studies and experiment results illustrate that our approaches not only contribute to predicting the unrated blank data for a sparse matrix but also improve the prediction accuracy as expected.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 26, Issue 8, October 2010, Pages 1409–1417
نویسندگان
, , , ,