کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
424944 685655 2009 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Scalable community-driven data sharing in e-science grids
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Scalable community-driven data sharing in e-science grids
چکیده انگلیسی

E-science projects of various disciplines face a fundamental challenge: thousands of users want to obtain new scientific results by application-specific and dynamic correlation of data from globally distributed sources. Considering the involved enormous and exponentially growing data volumes, centralized data management reaches its limits. Since scientific data are often highly skewed and exploration tasks exhibit a large degree of spatial locality, we propose the locality-aware allocation of data objects onto a distributed network of interoperating databases. HiSbase is an approach to data management in scientific federated Data Grids that addresses the scalability issue by combining established techniques of database research in the field of spatial data structures (quadtrees), histograms, and parallel databases with the scalable resource sharing and load balancing capabilities of decentralized Peer-to-Peer (P2P) networks. The proposed combination constitutes a complementary e-science infrastructure enabling load balancing and increased query throughput.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 25, Issue 3, March 2009, Pages 290–300
نویسندگان
, , , , , ,