کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
425871 685948 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining constrained frequent itemsets from distributed uncertain data
ترجمه فارسی عنوان
معادن اقلام مکرر محدود از داده های نامشخص توزیع شده است
کلمات کلیدی
داده کاوی، معدن الگوی مکرر، الگوریتم های محاسبات پیشرفته داده ها، محدودیت ها، محاسبات توزیع شده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی


• We proposed a system for tree-based distributed uncertain frequent itemset mining.
• Our system allows users to specify constraints for expressing their interests.
• It finds frequent itemsets that satisfy succinct constraints from distributed uncertain data.
• It also handles non-succinct (e.g., inductive succinct, anti-monotone) constraints.

Nowadays, high volumes of massive data can be generated from various sources (e.g., sensor data from environmental surveillance). Many existing distributed frequent itemset mining algorithms do not allow users to express the itemsets to be mined according to their intention via the use of constraints. Consequently, these unconstrained mining algorithms can yield numerous itemsets that are not interesting to users. Moreover, due to inherited measurement inaccuracies and/or network latencies, the data are often riddled with uncertainty. These call for both constrained mining and uncertain data mining. In this journal article, we propose a data-intensive computer system for tree-based mining of frequent itemsets that satisfy user-defined constraints from a distributed environment such as a wireless sensor network of uncertain data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Future Generation Computer Systems - Volume 37, July 2014, Pages 117–126
نویسندگان
, , ,