کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
426081 685991 2013 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Popular matchings in the stable marriage problem
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Popular matchings in the stable marriage problem
چکیده انگلیسی

We consider the problem of computing a maximum cardinality popular matching in a bipartite graph G=(A∪B,E)G=(A∪B,E) where each vertex u∈A∪Bu∈A∪B ranks its neighbors in a strict order of preference. Such a graph is called an instance of the stable marriage problem with strict preferences and incomplete lists. A matching M⁎M⁎ is popular if for every matching M in G, the number of vertices that prefer M   to M⁎M⁎ is at most the number of vertices that prefer M⁎M⁎ to M. Every stable matching of G is popular, however a stable matching is a minimum cardinality popular matching. The complexity of computing a maximum cardinality popular matching was unknown.In this paper we show a simple characterization of popular matchings in G=(A∪B,E)G=(A∪B,E). We also show a sufficient condition for a popular matching to be a maximum cardinality popular matching. We construct a matching that satisfies our characterization and sufficient condition in O(mn0)O(mn0) time, where m=|E|m=|E| and n0=min(|A|,|B|)n0=min(|A|,|B|). Thus the maximum cardinality popular matching problem in G=(A∪B,E)G=(A∪B,E) can be solved in O(mn0)O(mn0) time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Computation - Volume 222, January 2013, Pages 180–194
نویسندگان
, ,