کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
426334 | 686036 | 2007 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Algorithmic complexity bounds on future prediction errors
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We bound the future loss when predicting any (computably) stochastic sequence online. Solomonoff finitely bounded the total deviation of his universal predictor M from the true distribution μ by the algorithmic complexity of μ. Here we assume that we are at a time t > 1 and have already observed x = x1 ⋯ xt. We bound the future prediction performance on xt+1xt+2 ⋯ by a new variant of algorithmic complexity of μ given x, plus the complexity of the randomness deficiency of x. The new complexity is monotone in its condition in the sense that this complexity can only decrease if the condition is prolonged. We also briefly discuss potential generalizations to Bayesian model classes and to classification problems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Computation - Volume 205, Issue 2, February 2007, Pages 242-261
Journal: Information and Computation - Volume 205, Issue 2, February 2007, Pages 242-261