کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
426464 686079 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the complexity of some colorful problems parameterized by treewidth
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On the complexity of some colorful problems parameterized by treewidth
چکیده انگلیسی

In this paper, we study the complexity of several coloring problems on graphs, parameterized by the treewidth of the graph.1.The List Coloring problem takes as input a graph G, together with an assignment to each vertex v of a set of colors Cv. The problem is to determine whether it is possible to choose a color for vertex v from the set of permitted colors Cv, for each vertex, so that the obtained coloring of G is proper. We show that this problem is W[1]-hard, parameterized by the treewidth of G. The closely related Precoloring Extension problem is also shown to be W[1]-hard, parameterized by treewidth.2.An equitable coloring of a graph G is a proper coloring of the vertices where the numbers of vertices having any two distinct colors differs by at most one. We show that the problem is hard for W[1], parameterized by the treewidth plus the number of colors. We also show that a list-based variation, List Equitable Coloring is W[1]-hard for forests, parameterized by the number of colors on the lists.3.The list chromatic number χl(G) of a graph G is defined to be the smallest positive integer r, such that for every assignment to the vertices v of G, of a list Lv of colors, where each list has length at least r, there is a choice of one color from each vertex list Lv yielding a proper coloring of G. We show that the problem of determining whether χl(G)⩽r, the List Chromatic Number problem, is solvable in linear time on graphs of constant treewidth.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Computation - Volume 209, Issue 2, February 2011, Pages 143-153