کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
426658 686140 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The ideal membership problem and polynomial identity testing
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
The ideal membership problem and polynomial identity testing
چکیده انگلیسی

Given a monomial ideal I=〈m1,m2,…,mk〉 where mi are monomials and a polynomial f by an arithmetic circuit, the Ideal Membership Problem is to test if f∈I. We study this problem and show the following results.(a)When the ideal I=〈m1,m2,…,mk〉 for a constant k, we can test whether f∈I in randomized polynomial time. This result holds even for f given by a black-box, when f is of small degree.(b)When I=〈m1,m2,…,mk〉 for a constant is computed by a ΣΠΣ circuit with output gate of bounded fanin, we can test whether f∈I in deterministic polynomial time. This generalizes the Kayal–Saxena result [11] of deterministic polynomial-time identity testing for ΣΠΣ circuits with bounded fanin output gate.(c)When k is not constant the problem is coNP-hard. We also show that the problem is upper bounded by coMAPP over the field of rationals, and by coNPModpP over finite fields.(d)Finally, we discuss identity testing for certain restricted depth 4 arithmetic circuits.For ideals I=〈f1,…,fℓ〉 where each fi∈F[x1,…,xk] is an arbitrary polynomial but k is a constant, we show similar results as (a) and (b) above.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Computation - Volume 208, Issue 4, April 2010, Pages 351-363