کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
426843 686315 2010 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast computation of a longest increasing subsequence and application
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Fast computation of a longest increasing subsequence and application
چکیده انگلیسی

We consider the complexity of computing a longest increasing subsequence (LIS) parameterised by the length of the output. Namely, we show that the maximal length k of an increasing subsequence of a permutation of the set of integers {1,2,…,n} can be computed in time O(nloglogk) in the RAM model, improving the previous 30-year bound of O(nlogk). The algorithm also improves on the previous O(nloglogn) bound. The optimality of the new bound is an open question.Reducing the computation of a longest common subsequence (LCS) between two strings to an LIS computation leads to a simple O(rloglogk)-time algorithm for two sequences having r pairs of matching symbols and an LCS of length k.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Computation - Volume 208, Issue 9, September 2010, Pages 1054-1059