کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
426887 686335 2009 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A computable approach to measure and integration theory
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A computable approach to measure and integration theory
چکیده انگلیسی

We introduce a computable framework for Lebesgue’s measure and integration theory in the spirit of domain theory. For an effectively given second countable locally compact Hausdorff space and an effectively given finite Borel measure on the space, we define a recursive measurable set, which extends the corresponding notion due to S˜anin for the Lebesgue measure on the real line. We also introduce the stronger notion of a computable measurable set, where a measurable set is approximated from inside and outside by sequences of closed and open subsets, respectively. The more refined property of computable measurable sets give rise to the idea of partial measurable subsets, which naturally form a domain for measurable subsets. We then introduce interval-valued measurable functions and develop the notion of recursive and computable measurable functions using interval-valued simple functions. This leads us to the interval versions of the main results in classical measure theory. The Lebesgue integral is shown to be a continuous operator on the domain of interval-valued measurable functions and the interval-valued Lebesgue integral provides a computable framework for integration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Computation - Volume 207, Issue 5, May 2009, Pages 642-659