کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
426929 686360 2007 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On decidability of monadic logic of order over the naturals extended by monadic predicates
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On decidability of monadic logic of order over the naturals extended by monadic predicates
چکیده انگلیسی

A fundamental result of Büchi states that the set of monadic second-order formulas true in the structure (Nat, <) is decidable. A natural question is: what monadic predicates (sets) can be added to (Nat, <) while preserving decidability? Elgot and Rabin found many interesting predicates P for which the monadic theory of 〈Nat, <, P〉 is decidable. The Elgot and Rabin automata theoretical method has been generalized and sharpened over the years and their results were extended to a variety of unary predicates. We give a sufficient and necessary model-theoretical condition for the decidability of the monadic theory of (Nat, <, P1, … , Pn).We reformulate this condition in an algebraic framework and show that a sufficient condition proposed previously by O. Carton and W.Thomas is actually necessary. A crucial argument in the proof is that monadic second-order logic has the selection and the uniformization properties over the extensions of (Nat, <) by monadic predicates. We provide a self-contained proof of this result.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information and Computation - Volume 205, Issue 6, June 2007, Pages 870-889