کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
427552 | 686519 | 2010 | 6 صفحه PDF | دانلود رایگان |

Direct extension of (2D) matrix-based linear subspace algorithms to kernel-induced feature space is computationally intractable and also fails to exploit local characteristics of input data. In this letter, we develop a 2D generalized framework which integrates the concept of kernel machines with 2D principal component analysis (PCA) and 2D linear discriminant analysis (LDA). In order to remedy the mentioned drawbacks, we propose a block-wise approach based on the assumption that data is multi-modally distributed in so-called block manifolds. Proposed methods, namely block-wise 2D kernel PCA (B2D-KPCA) and block-wise 2D generalized discriminant analysis (B2D-GDA), attempt to find local nonlinear subspace projections in each block manifold or alternatively search for linear subspace projections in kernel space associated with each blockset. Experimental results on ORL face database attests to the reliability of the proposed block-wise approach compared with related published methods.
Journal: Information Processing Letters - Volume 110, Issue 17, 15 August 2010, Pages 761-766