کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
427729 686547 2012 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linear complexity of binary sequences derived from Euler quotients with prime-power modulus
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Linear complexity of binary sequences derived from Euler quotients with prime-power modulus
چکیده انگلیسی

We extend the definition of binary threshold sequences from Fermat quotients to Euler quotients modulo prpr with odd prime p   and r⩾1r⩾1. Under the condition of 2p−1≢1(modp2), we present exact values of the linear complexity by defining cyclotomic classes modulo pnpn for all 1⩽n⩽r1⩽n⩽r. The linear complexity is very close to the period and is of desired value for cryptographic purpose. We also present a lower bound on the linear complexity for the case of 2p−1≡1(modp2).


► Extend the definition of binary threshold sequences from Fermat quotients to Euler quotients.
► Determine the linear complexities by defining cyclotomic classes.
► The linear complexity is very close to the period if 2p−1≢1(modp2).
► Present a lower bound on the linear complexity for the case of 2p−1≡1(modp2).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing Letters - Volume 112, Issues 14–15, 15 August 2012, Pages 604–609
نویسندگان
, , ,