کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
428693 686879 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A moment-based nonlocal-means algorithm for image denoising
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
A moment-based nonlocal-means algorithm for image denoising
چکیده انگلیسی

Image denoising is a crucial step to increase image quality and to improve the performance of all the tasks needed for quantitative imaging analysis. The nonlocal (NL) means filter is a very successful technique for denoising textured images. However, this algorithm is only defined up to translation without considering the orientation and scale for each image patch. In this paper, we introduce the Zernike moments into NL-means filter, which are the magnitudes of a set of orthogonal complex moments of the image. The Zernike moments in small local windows of each pixel in the image are computed to obtain the local structure information for each patch, and then the similarities according to this information are computed instead of pixel intensity. For the rotation invariant of the Zernike moments, we can get much more pixels or patches with higher similarity measure and make the similarity of patches translation-invariant and rotation-invariant. The proposed algorithm is demonstrated on real images corrupted by white Gaussian noise (WGN). The comparative experimental results show that the improved NL-means filter achieves better denoising performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing Letters - Volume 109, Issues 23–24, 15 November 2009, Pages 1238-1244