کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
428720 686894 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nearly tight bounds on the number of Hamiltonian circuits of the hypercube and generalizations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Nearly tight bounds on the number of Hamiltonian circuits of the hypercube and generalizations
چکیده انگلیسی

It has been shown that for every perfect matching M of the d-dimensional n-vertex hypercube, d⩾2, n=d2, there exists a second perfect matching M′ such that the union of M and M′ forms a Hamiltonian circuit of the d-dimensional hypercube. We prove a generalization of a special case of this result when there are two dimensions that do not get used by M. It is known that the number Md of perfect matchings of the d-dimensional hypercube satisfies and, in particular, (2d/n)n/2(n/2)!⩽Md⩽(d!)n/(2d). It has also been shown that the number Hd of Hamiltonian circuits of the hypercube satisfies 1⩽limd→∞(logHd)/(logMd)⩽2. We finally strengthen this result to a nearly tight bound ((dlog2/(eloglogd))(1−on(1)))⩽Hd⩽(d!)n/(2d)((d−1)!)n/(2(d−1))/2 proving that limd→∞(logHd)/(logMd)=2. This means that the bound Hd⩾Md is improved to a nearly tight , so the number of Hamiltonian circuits in the hypercube is nearly quadratic in the number of perfect matchings. The proofs are based on a result for graphs that are the Cartesian product of squares and arbitrary bipartite regular graphs that have a Hamiltonian cycle. We also study a labeling scheme related to matchings.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Processing Letters - Volume 109, Issue 5, 15 February 2009, Pages 267-272