کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
430146 687812 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the numerical approximation of one-dimensional nonconservative hyperbolic systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On the numerical approximation of one-dimensional nonconservative hyperbolic systems
چکیده انگلیسی

Attempts to define weak solutions to nonconservative hyperbolic systems have lead to the development of several approaches, most notably the path-based theory of Dal Maso, LeFloch, and Murat (DLM) and the vanishing viscosity solutions described by Bianchini and Bressan. While these theories enable us to define weak solutions to nonconservative hyperbolic systems, difficulties arise when numerically approximating these systems. Specifically, in the neighborhood of a discontinuity, the numerical solutions tend to not converge to the theoretically specified weak solution of the system. This convergence error is easily seen in the numerical approximation of Riemann problems, in which the error appears and propagates at the formation of discontinuity waves. In this paper we investigate several methods to numerically approximate nonconservative hyperbolic systems, we discuss why these convergence errors arise, and by using recent results established by Alouges and Merlet we give an approximate description of what weak solutions these numerical solutions converge to. We then propose several strategies for the design of numerical schemes which reduce these convergence errors.


► Nonconservative hyperbolic systems.
► Dal Maso–LeFloch–Murat path theory.
► Numerical approximation of non-conservative systems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Computational Science - Volume 4, Issues 1–2, January–March 2013, Pages 111–124
نویسندگان
, ,