کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4375596 1617424 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Simple or complex: Relative impact of data availability and model purpose on the choice of model types for population viability analyses
ترجمه فارسی عنوان
پیچیده و یا ساده: تاثیر نسبی در دسترس بودن داده ها و هدف مدل بر انتخاب انواع مدل برای تجزیه و تحلیل زنده ماندن جمعیت
کلمات کلیدی
پیچیدگی مدل؛ مدل های مبتنی بر فرد ؛ مدل مبتنی بر جمعیت ؛ مدل ماتریس؛ مدل جمعیت ساختار؛ مدل مبتنی بر مرحله
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی


• Data availability and model purpose are assumed to determine PVA complexity.
• We tested this with 74 models representing pairs of one simple and one complex PVA.
• Availability of demographic, spatial and dispersal data affected the PVA model type.
• The specific model purpose did not affect the PVA model type.
• Collection of fine-tuned data is needed to develop more predictive PVA models.

Population viability analysis (PVA) models are used to estimate population extinction risk under different scenarios. Both simple and complex PVA models are developed and have their specific pros and cons; the question therefore arises whether we always use the most appropriate model type. Generally, the specific purpose of a model and the availability of data are listed as determining the choice of model type, but this has not been formally tested yet. We quantified the relative importance of model purpose and nine metrics of data availability and resolution for the choice of a PVA model type, while controlling for effects of the different life histories of the modelled species. We evaluated 37 model pairs: each consisting of a generally simpler, population-based model (PBM) and a more complex, individual-based model (IBM) developed for the same species. The choice of model type was primarily affected by the availability and resolution of demographic, dispersal and spatial data. Low-resolution data resulted in the development of less complex models. Model purpose did not affect the choice of the model type. We confirm the general assumption that poor data availability is the main reason for the wide use of simpler models, which may have limited predictive power for population responses to changing environmental conditions. Conservation biology is a crisis discipline where researchers learned to work with the data at hand. However, for threatened and poorly-known species, there is no short-cut when developing either a PBM or an IBM: investments to collect appropriately detailed data are required to ensure PVA models can assess extinction risk under complex environmental conditions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Modelling - Volume 323, 10 March 2016, Pages 87–95
نویسندگان
, , , , ,