کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4376363 1617497 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Soil fungal dynamics: Parameterisation and sensitivity analysis of modelled physiological processes, soil architecture and carbon distribution
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
Soil fungal dynamics: Parameterisation and sensitivity analysis of modelled physiological processes, soil architecture and carbon distribution
چکیده انگلیسی

The role of fungi in soil ecosystem sustainability is poorly understood, as is the extent to which it is affected by the microscale heterogeneity of soils with respect to structure, chemistry and biology. This is due to the complexity of soil ecosystems, presenting significant challenges to their study in situ. Many theoretical and simulation models have been developed to link nutrient levels to colony dynamics. Unfortunately, there is currently no model that can take both structural and nutritional microscale heterogeneity into account, and is parameterised for the soil environment. In this context, the objective of this article is to develop such a 3D spatially explicit model of fungal dynamics, and to calibrate it for a soil system using data from the literature. A sensitivity analysis is carried out to better understand the uncertainties in the input parameters and their effect on colony dynamics in terms of biomass yield and respiration rates. The results highlight simulation outcomes that are most suited to validation by experimentation. The results also indicate that predictions in biomass yield are sensitive to uncertainties in model parameters relative to the soil–fungal complex that at this point are insufficiently understood experimentally and still have to be estimated by model fitting. The latter parameters, which influence biomass yield and respiration, are associated with biomass recycling processes such as adsorption (,αni) desorption (βni, βi), insulation (ζni) and biomass yield efficiency (ɛ1), and translocation (Dv). The model now opens up great opportunities for hypothesis-driven research, combining theoretical models and novel types of experimentation, especially given the recently acquired ability to generate artificial, replicable soil-like microcosms on which to test model predictions.


► We parameterise a model of soil fungal dynamics to understand soil–microbial interactions.
► A sensitivity analysis assesses the impact of parameters unavailable from literature.
► Biomass recycling parameters are the main source of uncertainty in predicting soil fungal growth.
► Further research to reduce the uncertainty associated with these parameters is required.
► This parameterisation is critical to elucidate the role of fungi in C-dynamics in soil.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Modelling - Volume 248, 10 January 2013, Pages 165–173
نویسندگان
, , , ,