کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4377154 1303411 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling soil and plant phosphorus within DSSAT
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
Modeling soil and plant phosphorus within DSSAT
چکیده انگلیسی

The crop models in the Decision Support System for Agrotechnology Transfer (DSSAT) have served worldwide as a research tool for improving predictions of relationships between soil and plant nitrogen (N) and crop yield. However, without a phosphorus (P) simulation option, the applicability of the DSSAT crop models in P-deficient environments is limited. In this study, a soil–plant P model integrated to DSSAT was described, and results showing the ability of the model to mimic wide differences in maize responses to P in Ghana are presented as preliminary attempts to testing the model on highly weathered soils. The model simulates P transformations between soil inorganic labile, active and stable pools and soil organic microbial and stable pools. Plant growth is limited by P between two concentration thresholds that are species-specific optimum and minimum concentrations of P defined at different stages of plant growth. Phosphorus stress factors are computed to reduce photosynthesis, dry matter accumulation and dry matter partitioning. Testing on two highly weathered soils from Ghana over a wide range of N and P fertilizer application rates indicated that the P model achieved good predictability skill at one site (Kpeve) with a final grain yield root mean squared error (RMSE) of 535 kg ha−1and a final biomass RMSE of 507 kg ha−1. At the other site (Wa), the RMSE was 474 kg ha−1 for final grain yield and 1675 kg ha−1 for final biomass. A local sensitivity analysis indicated that under P-limiting conditions and no P fertilizer application, crop biomass, grain yield, and P uptake could be increased by over 0.10% due to organic P mineralization resulting from a 1% increase in organic carbon. It was also shown that the modeling philosophy that makes P in a root-free zone unavailable to plants resulted in a better agreement of simulated crop biomass and grain yield with field measurements. Because the complex soil P chemistry makes the availability of P to plants extremely variable, testing under a wider range of agro-ecological conditions is needed to complement the initial evaluation presented here, and extend the use of the DSSAT-P model to other P-deficient environments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Modelling - Volume 221, Issue 23, 24 November 2010, Pages 2839–2849
نویسندگان
, , , , , , ,