کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4379526 1617663 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Species interactions can maintain resistance of subtidal algal habitats to an increasingly modified world
ترجمه فارسی عنوان
تعاملات گونه ها می توانند مقاومت در برابر زیستگاه های جلبک زیرداد را به یک دنیای به طور فزاینده ای اصلاح کنند
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی

Current trends in habitat loss have been forecast to accelerate under anticipated global change, thereby focusing conservation attention on identifying the circumstances under which key species interactions retard habitat loss. Urbanised coastlines are associated with broad-scale loss of kelp canopies and their replacement by less productive mats of algal turf, a trend predicted to accelerate under ocean acidification and warming (i.e. enhanced CO2 and temperature). Here we use kelp forests as a model system to test whether efforts to maintain key species interactions can maintain habitat integrity under forecasted conditions. First, we assessed whether increasing intensity of local human activity is associated with more extensive turf mats and sparser canopies via structured field observations. Second, we experimentally tested the hypothesis that intact canopies can resist turf expansion under enhanced CO2 and temperature in large mesocosms. In the field, there was a greater proportion of turf patches on urbanised coasts of South Australia than in agricultural and urban catchments in which there was a greater proportion of canopy-forming algae. Mesocosm experiments revealed this expansion of turfs is likely to accelerate under increases in CO2 and temperature, but may be limited by the presence of intact canopies. We note that even in the presence of canopy, increases in CO2 and temperature facilitate greater turf covers than occurs under contemporary conditions. The influence of canopy would likely be due to shading of the understorey turfs which, in turn, can modify their photosynthetic activity. These results suggest that resistance of habitat to change under human-dominated conditions may be managed via the retention of key species and their interactions. Management that directly reduces the disturbance of habitat-forming organisms (e.g. harvesting) or reverses loss through restoration may, therefore, reinforce habitat resistance in an increasingly stressful world.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Global Ecology and Conservation - Volume 4, July 2015, Pages 549–558
نویسندگان
, , , , ,