کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4380076 1303964 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling the spatial–temporal dynamics of water use efficiency in Yangtze River Basin using IBIS model
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
Modeling the spatial–temporal dynamics of water use efficiency in Yangtze River Basin using IBIS model
چکیده انگلیسی

Climate change alters regional water and carbon cycling, which has been a hot study point in the filed of climatology and ecology. As a traditionally “water-rich” region of China, Yangtze River Basin plays an important role in regional economic development and ecosystem productivity. However, the mechanism of the influence of climate change on water and carbon cycling has been received little attention. As a coupling indicator for carbon and water, the water use efficiency (WUE) is widely used, which indicates the water consumption for carbon sequestration in watershed and regional scale. A lot of studies showed that climate change has significantly affected the water resource and production of the ecosystems in Yangtze River Basin during the period of 1956–2006, when great climate variations were occurred. To better understand the alternation pattern for the relationship between water and carbon cycling under climate change at regional scale, the WUE and the spatiotemporal variations patterns were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the WUE spatial pattern had the annual and seasonal variations. In general, the average annual WUE value per square meter was about 0.58 g C/kg H2O in Yangtze River Basin. The high WUE levels were mainly distributed in the eastern area of Sichuan, western area of Jiangxi and Hunan, and the highest value reached 0.88 g C/kg H2O. The lowest WUE’s were mainly located in the western area of Sichuan and Qinghai with the lowest values reaching to 0.36 g C/kg H2O. The WUE in other regions mostly ranged from 0.5 to 0.6 g C/kg H2O. For the whole study area, the annual WUE slowly increased from 1956 to 2006. The WUE in the upper reaches of Yangtze River increased based on the simulated temporal trends, which mainly located in the western area of the Sichuan Basin; the WUE of the middle reaches of Yangtze River had increased slightly from 1987 to 1996, and then decreased from 1996 to 2006; the lower reaches of Yangtze River always had smaller WUE’s than the average from 1956 to 2006. The spatiotemporal variability of the WUE in the vegetation types was obvious in the Yangtze River Basin, and it was depended on the climate and soil conditions, and as well the disturbance in its distribution areas. The temporal variations of WUE among different vegetation types had similar trends but different in values. The forest type had higher WUE than any other vegetation types ranging from 0.65 to 0.8 g C/kg H2O. The WUE of shrubland ranged from 0.45 to 0.6 g C/kg H2O. The WUE of tundra was the lowest, indicating the differences in plant physiology. The consistence of the spatial pattern of WUE with the NPP indicated that the regional production of Yangtze River Basin increased based on the water resources prompted and vegetation restoration. We found the drought climate was one of critical factor that impacts the alteration of WUE in Yangtze River Basin in the simulation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Ecologica Sinica - Volume 31, Issue 5, October 2011, Pages 246–253
نویسندگان
, , , , , , , ,