کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4380476 1304001 2006 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modulation and adaptation of carbonic anhydrase activity in Microcystis spp. under different environmental factors
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
پیش نمایش صفحه اول مقاله
Modulation and adaptation of carbonic anhydrase activity in Microcystis spp. under different environmental factors
چکیده انگلیسی

The carbonic anhydrase (CA) activities were determined in three cyanobacterial species, namely Microcystis aeruginosa Kütz., Microcystis viridis (A.Br.) Lemm, and Microcystis wesenbergii (Kom.) Kom, which were dominant in a lake (Dianchi Lake) subject to major blooms. In more detailed experiments on M. aeruginosa, the effects of inorganic carbon, pH, temperature, nitrogen/phosphorus ratio, glucose, and light intensity on CA activity were also investigated. Because of the relatively alkaline pH value of the culture media for the optimum growth of algal cells, bicarbonate ions were the main form of exogenous inorganic carbon. The results showed that the CA activity of M. aeruginosa was influenced dramatically by the concentration of bicarbonate. Consequently, it was suggested that bicarbonate ions were the main form of exogenous inorganic carbon that M. aeruginosa could utilize. Cultures grown in the dark exhibited CA activity six times higher than that of cells cultured mixotrophically with the addition of glucose. Features of eutrophic water bodies promoted an increase in CA activity, and the resulting higher CA activity would accelerate the utilization of inorganic carbon and favor the growth and blooming of Microcystis spp. in eutrophic lakes. Although the experiments were carried out under controlled experimental conditions, they could provide some basic data that would prove useful for the control of cyanobacterial blooms in nature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Ecologica Sinica - Volume 26, Issue 8, August 2006, Pages 2443-2448