کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4388373 1618002 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Scale parameter optimization through high-resolution imagery to support mine rehabilitated vegetation classification
ترجمه فارسی عنوان
بهینه سازی پارامتر مقیاس از طریق تصاویر با وضوح بالا برای حمایت از طبقه بندی گیاهان بازسازی می شود
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک بوم شناسی، تکامل، رفتار و سامانه شناسی
چکیده انگلیسی

Determining the appropriate scale of image objects is a critical aspect that affects segmentation quality in object-based classification. This research aims to assess the influence of three objective segmentation optimization methods for object-based vegetation classification through high-resolution imagery at mine rehabilitation site. These methods included estimation of scale parameter, segmentation error index, and Euclidean distance 2 index, which were employed to determine segmentation parameters, final classification accuracy, and optimal scale parameters for segmentation. The results showed that segmentation optimization may increase the classification accuracy of object-based analysis to extract information from artificial objects with regular shape, such as rehabilitated vegetation and urban green space. Given the high-resolution image with multi-spectral bands, the segmentation error and Euclidean distance 2 indices improved final classification accuracy relative to the control. Final classification accuracy obtained from each of four workflows further indicated that relatively small differences in scale parameters can lead to considerable differences in final classification accuracy. These methods automate the mail classification steps and improve the classification accuracy, only some parts of the classification require manual intervention, resulting in a more transferable approach with potentially less time required for classifying new imagery.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecological Engineering - Volume 97, December 2016, Pages 130–137
نویسندگان
, , , ,