کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
440138 690979 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computing shortest homotopic cycles on polyhedral surfaces with hyperbolic uniformization metric
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
پیش نمایش صفحه اول مقاله
Computing shortest homotopic cycles on polyhedral surfaces with hyperbolic uniformization metric
چکیده انگلیسی

The problem of computing shortest homotopic cycles on a surface has various applications in computational geometry and graphics. In general, shortest homotopic cycles are not unique, and local shortening algorithms can become stuck in local minima. For surfaces with a negative Euler characteristic that can be given a hyperbolic uniformization metric, however, we show that they are unique and can be found by a simple locally shortening algorithm. We also demonstrate two applications: constructing extremal quasiconformal mappings between surfaces with the same topology, which minimize angular distortion, and detecting homotopy between two paths or cycles on a surface.


► We consider the classical problem of computing shortest homotopic cycles on surfaces.
► Shortest homotopic cycles are unique for surfaces with hyperbolic metric.
► We apply a simple locally shortening algorithm to compute shortest homotopic cycles.
► We apply for constructing extremal quasiconformal mappings between surfaces.
► We apply for homotopy detection of paths or cycles on surfaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer-Aided Design - Volume 45, Issue 2, February 2013, Pages 113–123
نویسندگان
, , ,