کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
440676 691217 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
3D model classification via Principal Thickness Images
ترجمه فارسی عنوان
طبقه بندی مدل سه بعدی از طریق تصاویر ضخامت اصلی
کلمات کلیدی
مدل سه بعدی غیرسفت؛ طبقه بندی مدل سه بعدی؛ تصاویر ضخامت اصلی؛ بازنمایی ضعیف هسته
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی

With the innovation in 3D modeling software, more and more 3D models are becoming available in recent decades. To facilitate efficient retrieval and search of large 3D model databases, an effective shape classification algorithm is badly in need. In this paper, we propose a new feature descriptor named Principal Thickness Images (PTI) that encodes the boundary surface and the voxelized constituents of a 3D shape into three gray-scale images. With the support of PTI, we extend the kernel sparse representation-based classification from 2D case to non-rigid 3D models. Our classification algorithm inherits the robustness of kernel sparse representation and is able to achieve a high success rate and strong reliability on non-rigid models from the SHREC’11 non-rigid 3D models dataset. Numerous tests demonstrate superior performance of the proposed method over previous 3D shape classification approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer-Aided Design - Volume 78, September 2016, Pages 199–208
نویسندگان
, , , , , ,