کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
441154 691388 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Refinability of splines derived from regular tessellations
ترجمه فارسی عنوان
قابلیت اصلاح پذیری از اسپیلین ها از تسلط های منظم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی


• Multivariate splines can be derived by convolving indicator functions.
• Refinability (nestedness) is an important property of spline spaces.
• Refinable convolution-derived splines on shift-invariant tessellations are rare.
• Hex-splines and their generalizations are not refinable.
• This is proven via simple, geometric criteria for refinability.

Splines can be constructed by convolving the indicator function of a cell whose shifts tessellate RnRn. This paper presents simple, geometric criteria that imply that, for regular shift-invariant tessellations, only a small subset of such spline families yield nested spaces: primarily the well-known tensor-product and box splines. Among the many non-refinable constructions are hex-splines and their generalization to the Voronoi cells of non-Cartesian root lattices.

Figure optionsDownload high-quality image (53 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Aided Geometric Design - Volume 31, Issues 3–4, March–May 2014, Pages 141–147
نویسندگان
,