کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
441268 691426 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Incenter subdivision scheme for curve interpolation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
پیش نمایش صفحه اول مقاله
Incenter subdivision scheme for curve interpolation
چکیده انگلیسی

A new geometry driven subdivision scheme for curve interpolation is presented in this paper. Given a sequence of points and associated tangent vectors, we get a smooth curve interpolating the initial points by inserting new points iteratively. The new point corresponding to an edge is the incenter of a triangle, which is formed by the edge and the two tangent lines of the two end points, so we call such scheme incenter subdivision scheme. The limit curves are proved to be shape preserving and G1 continuous, but many numerical examples show that they are G2 continuous and fair. Generating spiral from two-vertices G1 Hermite data by the incenter subdivision scheme is also introduced. If all the initial points and their initial tangent vectors are sampled from a circular arc segment, the circular arc segment is reproduced. Several examples are given to demonstrate the excellent properties of the scheme.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Aided Geometric Design - Volume 27, Issue 1, January 2010, Pages 48-59