کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
441942 692022 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Efficient boundary surface reconstruction from heterogeneous volumetric data via tri-prism decomposition
ترجمه فارسی عنوان
بازسازی سطح مرزی کارآمد از داده های حجمی ناهمگن از طریق تقسیم سه ضلعی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی


• We extract the boundary surfaces from heterogeneous volumetric data.
• We model a heterogeneous object in one pass.
• We propose the data structure special for a heterogeneous object.
• The internal topological relationship can be preserved explicitly.

We propose a novel and efficient approach for extracting the boundary surfaces from heterogeneous volumetric data in one pass. Each homogeneous material component is surrounded by a boundary surface, which is composed of piecewise 2-manifold meshes. The key idea is to subdivide each cubical voxel into two tri-prism voxels and to construct the boundary surfaces in a dimension-ascending (DA) way, i.e., from points to lines and then to faces. The extracted boundary surfaces can fully isolate the homogeneous material components, and the information on intersections between boundary surfaces can be explicitly retrieved. The surface reconstruction process can be accomplished efficiently by adopting a case table. The proposed approach is independent of the number of material types employed. Additionally, a new case index encoding approach is proposed to encode all possible cases in a heterogeneous tri-prism voxel that can verify the proposed DA approach in an exhaustive enumeration manner. The experimental results demonstrate that our approach can accurately and efficiently generate a boundary representation of heterogeneous volumetric data.

Figure optionsDownload high-quality image (151 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Graphics - Volume 38, February 2014, Pages 212–221
نویسندگان
, , ,