کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
442542 692285 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Surface-reconstructing growing neural gas: A method for online construction of textured triangle meshes
ترجمه فارسی عنوان
بازسازی سطحی گاز عصبی رشد می کند: یک روش برای ساخت آنلاین ساختار مش های مثلثی
کلمات کلیدی
الگوریتم های هندسی اتصالات سطح، سایه و بافت، شبکه های عصبی، فراگیری ماشین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر گرافیک کامپیوتری و طراحی به کمک کامپیوتر
چکیده انگلیسی


• Online learning of triangulated surface with concurrent visualization.
• SGNG adapts to modifications of input data at any time during reconstruction.
• SGNG assigns textures automatically avoiding occlusion artifacts.

In this paper we propose surface-reconstructing growing neural gas (SGNG), a learning based artificial neural network that iteratively constructs a triangle mesh from a set of sample points lying on an object׳s surface. From these input points SGNG automatically approximates the shape and the topology of the original surface. It furthermore assigns suitable textures to the triangles if images of the surface are available that are registered to the points.By expressing topological neighborhood via triangles, and by learning visibility from the input data, SGNG constructs a triangle mesh entirely during online learning and does not need any post-processing to close untriangulated holes or to assign suitable textures without occlusion artifacts. Thus, SGNG is well suited for long-running applications that require an iterative pipeline where scanning, reconstruction and visualization are executed in parallel.Results indicate that SGNG improves upon its predecessors and achieves similar or even better performance in terms of smaller reconstruction errors and better reconstruction quality than existing state-of-the-art reconstruction algorithms. If the input points are updated repeatedly during reconstruction, SGNG performs even faster than existing techniques.

Figure optionsDownload high-quality image (187 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Graphics - Volume 51, October 2015, Pages 190–201
نویسندگان
, ,