کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
443380 692714 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Towards cheminformatics-based estimation of drug therapeutic index: Predicting the protective index of anticonvulsants using a new quantitative structure-index relationship approach
ترجمه فارسی عنوان
به سوی برآورد مبتنی بر شیمیانفورماتیک از شاخص درمانی دارو: پیش بینی شاخص محافظتی ضد انعقادی با استفاده از یک رویکرد رابطه شاخص ساختاری کمی جدید
کلمات کلیدی
TI، شاخص درماني؛ PI، شاخص محافظتی؛ TD50، دوز سمی برای 50٪ جمعیت؛ ED50، حداقل دوز موثر برای 50٪ از جمعیت؛ QSAR، رابطه فعالیت ساختاری کمی؛ QSTR، رابطه سمی بودن ساختار کمی؛ QS
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
چکیده انگلیسی


• Anticonvulsant activity, neurotoxicity and Protective index of more than 400 anticonvulsant agents are collectively provided for the first time.
• A machine learning regression quantitative structure-index relationship (QSIR) approach was introduced to predict the protective index for the first time.
• The QSIR approach outperformed the combination use of the good QSAR and QSTR models for predicting the protective index.
• This study suggests that the new QSIR approach is potentially useful for developing in-silico drug therapeutic index estimation tools.

The overall efficacy and safety profile of a new drug is partially evaluated by the therapeutic index in clinical studies and by the protective index (PI) in preclinical studies. In-silico predictive methods may facilitate the assessment of these indicators. Although QSAR and QSTR models can be used for predicting PI, their predictive capability has not been evaluated. To test this capability, we developed QSAR and QSTR models for predicting the activity and toxicity of anticonvulsants at accuracy levels above the literature-reported threshold (LT) of good QSAR models as tested by both the internal 5-fold cross validation and external validation method. These models showed significantly compromised PI predictive capability due to the cumulative errors of the QSAR and QSTR models. Therefore, in this investigation a new quantitative structure-index relationship (QSIR) model was devised and it showed improved PI predictive capability that superseded the LT of good QSAR models. The QSAR, QSTR and QSIR models were developed using support vector regression (SVR) method with the parameters optimized by using the greedy search method. The molecular descriptors relevant to the prediction of anticonvulsant activities, toxicities and PIs were analyzed by a recursive feature elimination method. The selected molecular descriptors are primarily associated with the drug-like, pharmacological and toxicological features and those used in the published anticonvulsant QSAR and QSTR models. This study suggested that QSIR is useful for estimating the therapeutic index of drug candidates.

Figure optionsDownload high-quality image (156 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Graphics and Modelling - Volume 67, June 2016, Pages 102–110
نویسندگان
, , , , , , , , ,