کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
443720 692756 2007 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله
Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens
چکیده انگلیسی

Volume learning algorithm (VLA) artificial neural network and partial least squares (PLS) methods were compared using the leave-one-out cross-validation procedure for prediction of relative potency of xenoestrogenic compounds to the estrogen receptor. Using Wilcoxon signed rank test we showed that VLA outperformed PLS by producing models with statistically superior results for a structurally diverse set of compounds comprising eight chemical families. Thus, CoMFA/VLA models are successful in prediction of the endocrine disrupting potential of environmental pollutants and can be effectively applied for testing of prospective chemicals prior their exposure to the environment.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Graphics and Modelling - Volume 26, Issue 2, September 2007, Pages 591–594
نویسندگان
, , , ,