کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
446298 | 1443183 | 2012 | 11 صفحه PDF | دانلود رایگان |

Two-dimensional discrete cosine transforms are used in the core transformations in all profiles of the H.264/Advanced video coding (AVC) standard. In this paper, implementing the resource sharing of high throughput 4 × 4 and 8 × 8 forward and inverse integer transforms for high definition H.264 is presented. It is shown that the 4 × 4 forward/inverse transform can be obtained from 8 × 8 forward/inverse transform using selective data input and data arrangement at intermediate stages. Fast 8 × 8 forward and inverse transform is implemented using matrix decomposition and matrix operation such as Kronecker product and direct sum. The proposed implementation does not require any transpose memory and has a dual clocked pipeline structure. Compared with existing designs, the gate count is reduced by 27.7% in the proposed design. The maximum operating frequency of the proposed system is approx. 1.3 GHz, while the throughput is 7 G and 18.7 G pixels/s for 4 × 4 and 8 × 8 forward integer transforms, respectively. The proposed design can be used for real time H.264/AVC high definition processing owing to its high throughput and low hardware cost.
Journal: AEU - International Journal of Electronics and Communications - Volume 66, Issue 7, July 2012, Pages 521–531